Theoretical Perspective on Electromagnetic Radiation at RHIC

Ralf Rapp
Cyclotron Institute +
Dept of Phys & Astro
Texas A&M University
College Station, USA

2012 RHIC & AGS Annual Users' Meeting BNL (Upton, NY), 12.06.12

1.) Intro: EM Spectral Function + Fate of Resonances

$$\frac{dN_{ee}}{d^4xd^4q} = \frac{-\alpha_{\text{em}}^2}{\pi^3M^2} f^B(q_0,T) \operatorname{Im} \Pi_{\text{em}}(M,q;\mu_B,T)$$

• Electromagn. spectral function

- \sqrt{s} < 2 GeV : non-perturbative
- $\sqrt{s} > 2$ GeV: perturbative ("dual")

Vector resonances "prototypes"

- representative for bulk hadrons: neither Goldstone nor heavy flavor

Modifications of resonances

- hadron gas → Quark-Gluon Plasma
- realization of transition?

1.2 Phase Transition(s) in Lattice QCD

- cross-over(s) \leftrightarrow smooth EM emission rates across T_{pc}
- chiral restoration in "hadronic phase"? (low-mass dileptons!)
- hadron resonance gas $\frac{\langle\!\langle \bar{q}q \rangle\!\rangle (T, \mu_B)}{\langle \bar{q}q \rangle} = 1 \sum_h \frac{\varrho_h^s \Sigma_h}{m_\pi^2 f_\pi^2} \simeq 1 \frac{T^2}{8f_\pi^2} \frac{1}{3} \frac{\varrho_N}{\varrho_0} \cdots$

Outline

2.) Chiral Symmetry Breaking in Vacuum

• Hadron Spectrum + Sum Rules

3.) Axial-/Vector Spectral Function in Medium

- Hadronic Theory
- QGP + Lattice QCD
- Assessing Chiral Restoration

4.) EM Probes at RHIC

- In-Medium Spectrometer
- Thermal Photons
- P_t Spectra + Collectivity

5.) **Conclusions**

2.1 Chiral Symmetry + QCD Vacuum

 $\mathcal{L}_{QCD}(m_{u,d} \approx 0)$: flavor + "chiral" (left/right) invariant

"Higgs" Mechanism in Strong Interactions:

• qq attraction ⇒ condensate fills QCD vacuum!

$$\langle 0 | \overline{q}q | 0 \rangle = \langle 0 | \overline{q}_L q_R + \overline{q}_R q_L | 0 \rangle \approx -5 f m^{-3}$$

Spontaneous Chiral Symmetry Breaking

Profound Consequences:

- effective quark mass: $m_q^* \propto \langle 0 | \overline{q}q | 0 \rangle$ \leftrightarrow mass generation!
- near-massless Goldstone bosons $\pi^{0,\pm}$
- "chiral partners" split: $\Delta M \approx 0.5 \text{GeV}$

2.2 Chiral (Weinberg) Sum Rules

- Quantify chiral symmetry breaking via observable spectral functions
- Vector (\mathbf{p}) Axialvector $(\mathbf{a_1})$ spectral splitting

$$I_n = -\int \frac{ds}{\pi} s^n \left(Im \Pi_V - Im \Pi_A \right)$$

$$I_{n} = -\int \frac{ds}{\pi} s^{n} \left(Im \Pi_{V} - Im \Pi_{A} \right) \qquad I_{-2} = \frac{1}{3} f_{\pi}^{2} r_{\pi}^{2} - F_{A} , \qquad I_{-1} = f_{\pi}^{2} ,$$
[Weinberg '67, Das et al '67]
$$I_{0} = -2m_{q} \langle 0 | \overline{q} q | 0 \rangle, \quad I_{1} = c \alpha_{s} \langle 0 | (\overline{q} q)^{2} | 0 \rangle$$

• Key features of updated "fit": [Hohler+RR '12] $\rho + a_1$ resonance, excited states ($\rho' + a_1'$), universal continuum (pQCD!)

2.2.2 Evaluation of Chiral Sum Rules in Vacuum

pion decay constants

chiral quark condensates

- vector-axialvector splitting (one of the) cleanest observable of spontaneous chiral symmetry breaking
- promising starting point to search for chiral restoration

2.3 QCD Sum Rules: ρ and a₁ in Vacuum

• dispersion relation:

$$\int_{0}^{\infty} \frac{ds}{s} \frac{Im\Pi_{\alpha}(s)}{Q^{2} + s} = \frac{\Pi_{\alpha}(Q^{2})}{Q^{2}}$$

[Shifman, Vainshtein+Zakharov '79]

• <u>lhs:</u> hadronic spectral fct. • <u>rhs:</u> operator product expansion

$$\frac{1}{M^2} \int_0^\infty ds \frac{\rho_V(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{m_q \langle \bar{q}q \rangle}{M^4} + \frac{1}{24M^4} \langle \frac{\alpha_s}{\pi} G_{\mu\nu}^2 \rangle - \frac{56\pi\alpha_s}{81M^6} \langle \mathcal{O}_4^V \rangle \dots$$

$$\frac{1}{M^2} \int_0^\infty ds \frac{\bar{\rho}_A(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{m_q \langle \bar{q}q \rangle}{M^4} + \frac{1}{24M^4} \langle \frac{\alpha_s}{\pi} G_{\mu\nu}^2 \rangle + \frac{88\pi\alpha_s}{81M^6} \langle \mathcal{O}_4^A \rangle \dots$$

• 4-quark + gluon **condensate** dominant

Outline

2.) Chiral Symmetry Breaking in Vacuum

• Hadron Spectrum + Sum Rules

3.) Axial-/Vector Spectral Function in Medium

- Hadronic Theory
- QGP + Lattice QCD
- Assessing Chiral Restoration

4.) EM Probes at RHIC

- In-Medium Spectrometer
- Thermal Photons
- P_t Spectra + Collectivity

5.) **Conclusions**

3.1 Vector Mesons in Hadronic Matter

[Chanfray et al, Herrmann et al, Asakawa et al, RR et al, Koch et al, Klingl et al, Post et al, Eletsky et al, Harada et al ...]

ρ-Propagator:

$$D_{\rho}(M,q;\mu_{B},T) = [M^{2} - m_{\rho}^{2} - \Sigma_{\rho\pi\pi}^{2} - \Sigma_{\rho B}^{2} - \Sigma_{\rho M}^{2}]^{-1}$$

Selfenergies:
$$\Sigma_{\rho\pi\pi} = \sum_{\Gamma} \sum_{\pi} \sum_{\tau} \sum_{\tau$$

$$\sum_{\rho B, \rho M} = \bigvee_{N, \pi, K \cdots}^{\rho} \bigvee_{N, \pi, K \cdots}^{\rho}$$

Constraints: decays: B,M $\rightarrow \rho N$, $\rho \pi$, ...; scattering: $\pi N \rightarrow \rho N$, γA , ...

3.2 Axialvector in Nucl. Matter: Dynamical a₁(1260)

1500

1600

1000

1100

P⁰ (MeV)

1300

1400

• 1	•	1	_			4
in-med	1111m	$\pi +$	$\mathbf{\Omega}^{-1}$	nro1	าลฐล	tors
			\sim		7454	

• broadening of π - ρ scatt. Amplitude

Roca+RR '09]

• pion decay constant in medium:

ρ/ρ_0	present work $(\pi\text{-selfenergy A})$	present work $(\pi\text{-selfenergy B})$		
0	93	93		
1/2	100-108	91-101		
1	65-86	66-93		

3.3 Vector Correlator in Thermal Lattice QCD

• Euclidean Correlation fct.
$$\Pi_{em}(\tau,q;T) = \int_0^\infty \frac{dq_0}{2\pi} \rho_{em}(q_0,q;T) \frac{\cosh[q_0(\tau-1/2T)]}{\sinh[q_0/2T]}$$

• "Parton-Hadron Duality" of lattice and in-medium hadronic?!

3.3.2 Back to Spectral Function

• suggests approach to chiral restoration + deconfinement

3.4 Dilepton Rates: Hadronic - Lattice - Perturbative

ω/T

10

8

3.5 Summary: Criteria for Chiral Restoration

• Vector (ρ) – Axialvector (a_1) degenerate

$$I_n = -\int \frac{ds}{\pi} s^n \left(Im \Pi_V - Im \Pi_A \right)$$
 [Weinberg '67, Das et al '67]
$$I_{-1} = f_{\pi}^2, \quad I_0 = 0, \quad I_1 = c \alpha_s \left\langle (\overline{q}q)^2 \right\rangle$$

- QCD sum rules:
 medium modifications ↔ vanishing of condensates
- Agreement with thermal lattice-QCD
- Approach to perturbative rate (QGP)

3.6 Strategies to Test For Chiral Restoration

Outline

2.) Chiral Symmetry Breaking in Vacuum

• Hadron Spectrum + Sum Rules

3.) Axial-/Vector Spectral Function in Medium

- Hadronic Theory
- QGP + Lattice QCD
- Assessing Chiral Restoration

4.) EM Probes at RHIC

- In-Medium Spectrometer
- Thermal Photons
- P_t Spectra + Collectivity

5.) **Conclusions**

4.1 Dilepton Rates vs. Exp.: NA60 "Spectrometer"

• Evolve rates over fireball expansion:

Acc.-corrected μ⁺μ⁻ Excess Spectra

• invariant-mass spectrum directly reflects thermal emission rate!

$$\frac{dN_{\mu\mu}^{therm}}{dM} = \int_{\tau_0}^{\tau_{fo}} d\tau V_{FB}(\tau) \int \frac{M d^3 q}{q_0} \frac{dR_{\mu\mu}^{therm}}{d^4 q}$$

Thermal µ+µ- Emission Rate

4.2 Low-Mass e⁺e⁻ at RHIC: PHENIX vs. STAR

- "large" enhancement not accounted for by theory
- cannot be filled by QGP radiation...

• (very) low-mass region overpredicted... (SPS?!)

4.3 Direct Photons at RHIC

- $T_{eff}^{excess} = (220\pm25) \text{ MeV}$
- QGP radiation?
- radial flow?

- $v_2^{\gamma,dir}$ comparable to pions!
- under-predicted by early QGP emission [Holopainen et al '11,...]

4.3.2 Revisit Ingredients

Emission Rates

10⁻³ — in-med HG — Meson-Ex in-med QGP — LO QGP T=200MeV 0 0.5 1 1.5 2 2.5 3

Fireball Evolution

- Hadron QGP continuity!
- conservative estimates...

 [Turbide et al '04]

- multi-strange hadrons at "T_c"
- **v**₂^{bulk} fully built up at hadronization
- chemical potentials for π , K, ...

[van Hees et al '11]

4.3.3 Thermal Photon Spectra + v₂: PHENIX

4.4 Elliptic Flow of Dileptons at RHIC

• maximum structure due to late ρ decays [He et al '12]

4.5 QGP Barometer: Blue Shift vs. Temperature

- QGP-flow driven increase of $T_{eff} \sim T + M (\beta_{flow})^2$ at RHIC
- high \mathbf{p}_t : high \mathbf{T} wins over high-flow $\boldsymbol{\rho}$'s \rightarrow minimum (opposite to \mathbf{SPS} !)
- saturates at "true" early temperature T_0 (no flow)

5.) Conclusions

- Axial/Vector spectral functions well suited to quantify chiral symmetry breaking and restoration
- Constraints on in-medium V/A spectral functions:
 - elementary reactions
 - lattice QCD correlators
 - QCD sum rules (condensates)
- Use **EM spectral function** to connect:
 - dilepton/photon data in URHICs
 - Weinberg sum rules
- Corrolary use of EM probes:
 - fireball lifetime + temperature (M-spectra)
 - collectivity to determine emission source
- Interpretation of RHIC results wide open

4.1 Quantitative Bulk-Medium Evolution

- initial conditions (compact, initial flow?)
- EoS: lattice (QGP, $T_c \sim 170 \text{MeV}$) + chemically frozen hadronic phase
- spectra + elliptic flow: multistrange at $T_{ch} \sim 160 MeV$ [He et al '11] π , K, p, Λ , ... at $T_{fo} \sim 110 MeV$

• v₂ saturates at T_{ch}, good light-/strange-hadron phenomenology

4.1.3 Mass Spectra as Thermometer

• Overall slope T~150-200MeV (true T, no blue shift!)

4.1.2 Sensitivity to Spectral Function

In-Medium ρ-Meson Width

- avg. Γ_{ρ} (T~150MeV)~370 MeV \Rightarrow Γ_{ρ} (T~T_c) \approx 600 MeV \rightarrow m_{ρ}
- driven by (anti-) baryons

2.3.2 NA60 Mass Spectra: p_t Dependence

• more involved at $p_T>1.5$ GeV: Drell-Yan, primordial/freezeout ρ , ...

5.2 Chiral Restoration Window at LHC

- low-mass spectral shape in chiral restoration window:
 ~60% of thermal low-mass yield in "chiral transition region"
 - (T=125-180MeV)

• enrich with (low-) p_t cuts

4.3 Dimuon p_t-Spectra and Slopes: Barometer

- theo. slopes originally too soft
- increase fireball acceleration, e.g. $\mathbf{a}_{\perp} = \mathbf{0.085/fm} \rightarrow \mathbf{0.1/fm}$
- insensitive to T_c=160-190MeV

Outline

2.) Chiral Symmetry Breaking in Vacuum

- "Higgs Mechanism", Condensates + Mass Gap in QCD
- Hadron Spectrum, Chiral Partners + Sum Rules

3.) EM Spectral Function in Medium

- Hadronic Theory
- QGP + Lattice QCD

4.) Highlights of EM Probes in Heavy-Ion Collisions

- Spectro-, Thermo-, Chrono- + Baro-meter
- Thermal Photons

5.) Low-Mass Dileptons at LHC

Mass Spectra + Collectivity

6.) **Conclusions**

5.1 Thermal Dileptons at LHC

- charm comparable, accurate (in-medium) measurement critical
- low-mass spectral shape in chiral restoration window

- all calculated with the same e.m. spectral function!
- •thermal source: T_i≈210MeV, HG-dominated, ρ-meson melting!

2.) Transport: Electric Conductivity

$$\sigma_{\rm em} = -e^2 \lim_{q_0 \to 0} \frac{\partial}{\partial q_0} Im \Pi_{\rm em}(q_0, q=0) = -e^2 \lim_{q_0 \to 0} \frac{1}{q_0} Im \Pi_{\rm em}(q_0, q=0)$$

- hadronic theories (T~150MeV):
 - chiral pert. theory (pion gas): $\sigma_{\rm em}/T \sim 0.11~e^2$ [Fernandez-Fraile+Gomez-Nicola '07]
 - hadronic many-body theory: $\sigma_{\rm em} / T \sim 0.09 \ e^2$
- lattice QCD $(T \sim (1.5-3) T_c)$: [Gupta '04, Aarts et al '07, Ding et al. '11]
- soft-photon limit of thermal emission rate $q_0 \frac{dN_{\gamma}}{d^4 x d^3 q} (q_0 \to 0) = \frac{T}{4\pi^3} \sigma_{\text{em}}$
- EM Susceptibility (\rightarrow charge fluctuations):

$$\langle \mathbf{Q}^2 \rangle - \langle \mathbf{Q} \rangle^2 = \chi_{em} = \Pi_{em}(\mathbf{q}_0 = \mathbf{0}, \mathbf{q} \rightarrow \mathbf{0})$$

5.2 Intermediate-Mass Dileptons: Thermometer

• use invariant continuum radiation (M>1GeV): no blue shift, $T_{slope} =$

- independent of partition HG vs QGP (dilepton rate continuous/dual)
- initial temperature $T_i \sim 190-220$ MeV at CERN-SPS

4.7.2 Light Vector Mesons at RHIC + LHC

- baryon effects important even at $\rho_{B,tot} = 0$: sensitive to $\rho_{Btot} = \rho_B + \rho_B$ (ρ -N and ρ -N interactions identical)
- ω also melts, ϕ more robust \leftrightarrow OZI

5.3 Intermediate Mass Emission: "Chiral Mixing"

[Dey, Eletsky +Ioffe '90]

• low-energy pion interactions fixed by chiral symmetry

mixing parameter

$$\varepsilon = \frac{4}{f_{\pi}^2} \int \frac{d^3k}{(2\pi)^3 2\omega_k} f^{\pi}(\omega_k) \approx \frac{T^2}{6f_{\pi}^2}$$

- degeneracy with perturbative spectral fct. down to M~1GeV
- physical processes at $M \ge 1$ GeV: $\pi a_1 \rightarrow e^+e^-$ etc. (" 4π annihilation")

$$\Pi_V^{\mu\nu}(q) = (1-\varepsilon)\Pi_V^{0,\mu\nu}(q) + \varepsilon\Pi_A^{0,\mu\nu}(q)$$

$$\Pi_A^{\mu\nu}(q) = (1-\varepsilon)\Pi_A^{0,\mu\nu}(q) + \varepsilon\Pi_V^{0,\mu\nu}(q)$$

3.2 Dimuon p_t-Spectra and Slopes: Barometer

- modify fireball evolution: e.g. $\mathbf{a}_{\perp} = \mathbf{0.085/fm} \rightarrow \mathbf{0.1/fm}$
- both large and small T_c compatible with excess dilepton slopes

4.4.3 Origin of the Low-Mass Excess in PHENIX?

- QGP radiation insufficient:
 - space-time, lattice QGP rate + resum. pert. rates **too small**

must be of long-lived hadronic origin

- Disoriented Chiral Condensate (DCC)?
- [Bjorken et al '93, Rajagopal+Wilczek '93]

[Z.Huang+X.N.Wang '96 Kluger,Koch,Randrup '98]

- "baked Alaska" ↔ small **T**
- rapid quench+large domains ↔ central **A-A**
- π_{therm} + π_{DCC} \rightarrow e⁺ e⁻ \leftrightarrow M~0.3GeV, small p_t
- Lumps of self-bound pion liquid?
- Challenge: consistency with hadronic data, NA60 spectra!

2.3.3 Spectrometer III: Before Acceptance Correction

- Discrimination power much reduced
- can compensate spectral "deficit" by larger flow: lift pairs into acceptance

4.2 Improved Low-Mass QGP Emission

$$\frac{dR_{ee}}{d^4q} = \frac{\alpha_{\text{em}}^2}{6\pi^3 M^2} f^B(q_0;T) \rho_V(q_0,q)$$

- LO pQCD spectral function: $\rho_V(q_0,q) = \frac{6}{9} \frac{3M^2}{2\pi} \left[1 + Q_{HTL}(q_0)\right]$
- 3-momentum augmented lattice-QCD rate (finite y rate)

4.4.1 Variations in QGP Radiation

• improvements in QGP rate insufficient

4.4.2 Variations in Fireball Properties

• variations in space-time evolution only significant in (late) hadronic phase

4.1 Nuclear Photoproduction: p Meson in Cold Matter

e+e- Invariant Mass (GeV)

• extracted "in-med" ρ -width $\Gamma_{\rho} \approx 220 \text{ MeV}$

[CLAS+GiBUU '08]

• Microscopic Approach:

product. amplitude + in-med. ρ spectral fct.

• p-broadening reduced at high 3-momentum; need low momentum cut!

1.2 Intro-II: EoS and Particle Content

- Hadron Resonance Gas until close to T_c
 - but far from non-interacting:
 short-lived resonances R:
 a + b → R → a + b , τ_R ≤ 1 fm/c
- Parton Quasi-Particles shortly above T_c
 - **but** large interaction measure $I(T) = \varepsilon 3P$

- ⇒ both "phases" strongly coupled (hydro!):
 - large interaction rates \rightarrow large collisional widths
 - resonance broadening \rightarrow melting \rightarrow quarks
 - broad parton quasi-particles
 - "Feshbach" resonances around T_c (coalescence!)

2.3.6 Hydrodynamics vs. Fireball Expansion

 very good agreement between original hydro [Dusling/Zahed] and fireball [Hees/Rapp]

2.1 Thermal Electromagnetic Emission

EM Current-Current Correlation Function:

$$\Pi_{\rm em}^{\mu\nu}(q) = -i \int d^4x \, e^{iqx} \, \Theta(x_0) \, \langle [j_{\rm em}^{\mu}(x), j_{\rm em}^{\nu}(0)] \rangle_T$$

Thermal Dilepton and Photon Production Rates:

Low Mass:

$$Im\Pi_{\rm em} \sim [ImD_{\rho} + ImD_{\omega}/10 + ImD_{\phi}/5]$$

ρ-meson dominated

4.2 Low-Mass Dileptons: Chronometer

• first "explicit" measurement of interacting-fireball lifetime: $\tau_{FR} \approx (7\pm1)$ fm/c